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Abstract

Large scale dynamic simulations can often be simpli®ed by appropriately replacing large portions of the domain
by a Dirichlet to Neumann, or DtN map (Givoli 1992. Numerical Methods for Problems on In®nite Domains, 1st

ed. Elsevier, Amsterdam). Here we consider the problem of representing a linear dynamical subsystem by such a
map. The exact DtN map is computed as a modal summation and its properties are studied. Bounds on the symbol
of the DtN map in the Laplace domain are obtained. The exact map is then approximated, in particular in the high

modal density regime. In the high modal density limit, we obtain the result that a subsystem can be accurately
represented with just three parameters. Within such an approximation we obtain representations based on a
maximum entropy representation, self-similar or fractal representation, and a rational function representation. The

rational function representation leads to the interesting result that any complicated dynamical subsystem with a
large number of degrees of freedom is asymptotically equivalent (in the limit of in®nite modal density) to a single
mass-dashpot-spring system. We end with numerical examples showing the e�ciency of the rational function
approximation. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Substructuring and `reduction' or `condensation' procedures have been used to simplify large scale
numerical calculations since the mid 1960s (Guyan, 1965; Hurty, 1965). In typical condensation
procedures, one begins with a complete model of the so-called `slave' subsystem, and projects the
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response of the slave subsystem onto a relatively small subspace. The subspace is typically developed
from a combination of rigid body modes, dynamic modes, and constraint modes (Craig, 1995).

Such techniques are especially useful when the subsystem has relatively few eigenvalues in the
frequency range of interest of a given simulation. Then the subsystem can be represented by relatively
few component modes, and its response is relatively simple to simulate and to understand. We are
mainly concerned here, however, with the opposite case: that is when within any frequency range of
interest, a very large number of eigenvectors of the subsystem are necessary to accurately characterize its
response. We consider such a subsystem to be complicated.3 This limit has been examined in the context
of a speci®c example by Weaver (1996, 1997) Strasberg and Feit (1996) Nagem et al. (1997) and in other
special and more general cases by, Pierce et al. (1993), Pierce (1995a), Cherukuri and Barbone (1998),
Goldman and Barbone (1996) and Barbone (1995, 1998).

Rather than the condensation approaches mentioned above, we choose to represent the substructure
through its Dirichlet to Neumann, or DtN Map (Givoli, 1992). Givoli, Keller and coworkers have been
very successful in using DtN maps to represent the `di�cult' parts of computational problems in many
di�erent settings, including: in®nite domains (Keller and Givoli, 1989; Givoli and Keller, 1989, 1990),
shell problems (Givoli, 1990), and cracks and corners (Givoli and Keller, 1992; Givoli and Rivkin,
1993).

In the context of dynamic substructure representation, the DtN map takes displacement histories on
the boundary of the substructure into current forces/tractions applied at the same boundary.
Accordingly, the forces are the Neumann data, and the displacements are the Dirichlet data. Given the
exact DtN map representing a slave substructure, the presence of that substructure is exactly taken into
account when computing the dynamics of the master structure.

Though exact DtN map representations of substructures may be available, approximate
representations are often attractive. There are at least two reasons for this. First, the approximate
representation may provide su�cient accuracy at greatly reduced computational cost. Second, and
perhaps more importantly, an approximate representation may involve only a few gross parameters of
the dynamical system, sometimes as few as three as we shall show. These parameters can be easily
estimated, thus permitting simulations to be performed without detailed knowledge of the dynamic
properties of the substructures. This is an especially important advantage when the substructure is very
complicated.

In this paper, we consider the problem of constructing and approximating time-domain DtN map
representations of very complicated substructures. We shall focus here on the special case of a
substructure which is attached to the master through a single point. In Section 2 we formulate the
problem to be solved in order to ®nd the DtN map. We give the exact DtN map in Section 3, and
discuss various of its properties in Section 4. These include bounds on the DtN map in the Laplace
domain which are, we believe, presented for the ®rst time here. We also derive various bounds on many
of the gross dynamic properties of the subsystem in this section. We then move on to the special case of
high modal density systems in Section 5. By expanding the DtN map asymptotically in powers of the
modal spacing, we ®nd that an approximate DtN map can be constructed that depends on as few as
three parameters. We call these the `e�ective dynamical parameters', and their identi®cation represents
one of the central contributions of this paper. On the basis of our high modal density theory, we
consider three `canonical representations' in Section 6. These are: the maximum entropy representation,
the self-similar or fractal representation, and the rational function representation. The rational function
representation leads to a startling equivalence: that undamped but su�ciently complicated substructures
are asymptotically equivalent (in the limit or zero modal spacing) to a single spring-dashpot-mass

3 Some authors refer to such subsystems as `fuzzy substructures'.
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system, up to simulation times proportional to the inverse of the modal spacing. Speci®c formulas for
the coe�cients of the reduced system are given. Finally, we give some examples applying our theory for
complicated subsystems in Section 7.

2. Formulation

We consider a dynamical subsystem which has a quadratic potential energy function in the N degrees
of freedom, xn, n � 1, . . . , N: We shall assume that the dynamical system is attached to the outside
world at only one attachment point; see Fig. 1. The displacement of the attachment point from
equilibrium is denoted by x0�t�: We will denote by f0�t� the force that is applied to the attachment point.
The `DtN' condition that we will derive represents a map from x0�t� to f0�t�: Thus, the e�ect of the
dynamical subsystem can be included in a dynamical simulation by employing the following boundary
condition at the attachment point

f0�t� �M�x0�t��: �1�
Here, M denotes the DtN map.

In what follows, x0 and xn are purely unidirectional. The extension to many attachment points and
three dimensional displacements follows in a future contribution.

In the case when f0=0, we can write the potential energy function as

V�x0, x� � 1

2
�x �Kx� 2x0kkk � x� kox

2
0�: �2�

Here, x is an N dimensional displacement vector, K is an N�N positive de®nite matrix, kkk is an N
dimensional vector of spring constants, and ko is a coupling spring constant. The potential energy
function must be invariant to rigid body translation (Pierce, 1995a). Therefore, for all a

V�x0 � a, x� ap� � V�x0, x�: �3�
In Eq. (3), p is an N dimensional vector with each component equal to unity. Substituting Eq. (2) into

Fig. 1. A subsystem composed of many smaller subsystems. Each subsystem is connected at its attachment point to a light rigid

rod. The rigid rod de®nes the attachment point of the new `composite' subsystem. The attachment point displacement of the com-

posite subsystem is x 0�t�, and the force required to specify that motion is f0�t�:
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Eq. (3) yields

Kp � ÿkkk �4�

ko � ÿp � kkk � p �Kp: �5�
We introduce the positive de®nite mass matrix M which allows us to write the kinetic energy function
as:

T�Çx� � 1

2
�mo _x20 � Çx �MÇx�: �6�

Lagrange's dynamical equations of motion (Lanczos, 1986) given us the equations of motion for our
system as:

MÈx�Kx�t� � ÿkkkx0�t� �7�

mo �x0 � kkk � �x�t� ÿ px0�t�� � f0�t�: �8�

3. Exact DtN map

An exact DtN map can be constructed by solving Eq. (7) exactly and substituting the result into Eq.
(8). An exact solution of Eq. (7) can be constructed in terms of a Green's function. The Green's
function itself shall be found in terms of the modes of vibration of the dynamical subsystem.

3.1. The Green's function

The Green's function, g�tÿ t� satis®es
MÈg�tÿ t� �Kg�tÿ t� � ÿkkkd�tÿ t�, �9�

g�tÿ t� � 0 t < t: �10�
Eq. (7), together with Eqs. (9) and (10) show that x(t ) is given by

x�t� �
�t
ÿ1

g�tÿ t�x0�t� dt: �11�

We now solve Eq. (9) for g in terms of a normal mode expansion. We begin by introducing a change of
dependent variables

g�t� � Mÿ1=2y�t�: �12�
Here, M1/2 is the unique positive de®nite matrix which satis®es M1/2M1/2=M. We shall not have the
need to calculate M1/2 explicitly here. Substituting Eq. (12) into Eq. (9) and left multiplying both sides
by Mÿ1/2 yields

Èy�t� �Mÿ1=2KMÿ1=2y�t� � ÿMÿ1=2kkkd�t�: �13�
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The matrix Mÿ1/2KMÿ1/2 is N�N, symmetric and positive de®nite. It therefore possesses N
distinct, orthonormal eigenvectors xxx�n�, n � 1, . . ., N, and N (not necessarily distinct) positive
eigenvalues o 2

n:

Mÿ1=2KMÿ1=2xxx�n� � o2
nxxx
�n� �14�

Since xxx�n� span RN, we can write

y�t� �
XN
n�1

xxx�n�zn�t�: �15�

We now substitute Eq. (15) into Eq. (13) and make use of the orthonormality of xxx�n� to obtain

�zn�t� � o2
nzn�t� � ÿxxx�n� �Mÿ1=2kkk�t�: �16�

Further, causality requires

zn�t� � 0 t < 0: �17�
Solving Eq. (16) subject to the condition (17) yields

zn�t� � ÿ 1

on
xxx�n� �Mÿ1=2kkk sin�ont� tr0: �18�

We obtain g�t� by using Eq. (18) in Eqs. (15) and (12) to ®nd, for t>0

g�t� � ÿMÿ1=2
XN
n�1

1

on
xxx�n��xxx�n� �Mÿ1=2kkk� sin�ont�: �19�

With g�t� determined, the exact DtN map follows directly using Eqs. (11) and (8):

f0�t� � mo �x0�t� ÿ kkk � px0�t� ÿ
�t
ÿ1

kkk �Mÿ1=2
XN
n�1

1

on
xxx�n��xxx�n� �Mÿ1=2kkk� sin on�tÿ t� x0�t� dt �20�

Eq. (20) can be simpli®ed by utilizing the concept of modal mass. O'Hara and Cunni� (1963) de®ne the
modal mass as (see also generalization in Pierce (1995a) and Cherukuri and Barbone (1998))

mn � �p �Mÿ1=2xxx�n��2: �21�
From the de®nition of xxx�n�, we note that

Mÿ1=2KMÿ1=2xxx�n� � o2
nxxx
�n�: �22�

We left multiply Eq. (22) by kkk �Kÿ1M1=2, and use Eq. (4) to ®nd

kkk �Mÿ1=2xxx�n� � ÿo2
np �M1=2xxx�n�: �23�

We now use Eqs. (23) and (21) to simplify Eq. (20) and obtain

f0�t� � mo �x0�t� � kox0�t� ÿ
�t
ÿ1

XN
n�1

mno3
n sin on�tÿ t� x0�t� dt: �24�
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4. Properties of DtN map

The exact DtN map, Eq. (24), has many interesting properties which we now describe. These include
relations among the various coe�cients appearing in Eq. (24), as well as the behavior of the Laplace
transform of the DtN map in the complex plane.

4.1. The properties of the modal masses

O'Hara and Cunni� (1963) show that the sum of the modal masses de®ned as in Eq. (21) is equal to
the total mass of the substructure, i.e.

XN
n�1

mn �MT �25�

For completeness of our presentation, we show a similar proof here. From Eq. (21) and the
orthonormality of xxx�n�, we have:

XN
n�1

mn �
XN
n�1
�p �M1=2xxx�n��2 �

XN
n�1
�p �M1=2xxx�n���p �M1=2xxx�n�� � p �M1=2M1=2p � p �Mp �MT: �26�

A relation that is stated by neither O'Hara and Cunni� (1963) nor Pierce (1995a) is that between the
attachment sti�ness ko and the modal masses. To show this, we consider the sum:

XN
n�1

o2
nmn �

XN
n�1

o2
n�p �M1=2xxx�n��2 �

XN
n�1

o2
n�p �M1=2xxx�n���p �M1=2xxx�n��

�
XN
n�1

o2
n

�
p �
�

1

o2
n

KMÿ1=2xxx�n�
��
�p �M1=2xxx�n��

�by Eq: �22�� � p �KMÿ1=2M1=2p � ko �by Eqs: �4� and �5��:

�27�

Here, we again used the orthonormality of the xxx�n�:
The two parameters MT and ko can be used to de®ne a `bulk' frequency scale for the subsystem. Thus

we de®ne O, the e�ective or bulk or gross frequency parameter of the subsystem as:

O2 � ko=MT: �28�

4.2. The DtN map in the Laplace domain

We now consider the Laplace transform of Eq. (24) and the resulting DtN map in the transform
domain. To that end, we ®rst introduce the following de®nitions:

F0�s� �
�1
0

f0�t� eÿst dt �29�

X0�s� �
�1
0

x0�t� eÿst dt �30�
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Multiplying Eq. (24) by eÿst and integrating with respect to t then yields:

F0�s� � s2moX0�s� � K�s�X0�s� �31�
Here we have introduced K�s�, the symbol of the DtN operator under Laplace transformation. It is
given by the function:

K�s� � ko ÿ
�1
0

XN
n�1

mno3
n sin�ont� eÿst dt: �32�

In obtaining Eq. (31), we assumed that both x0�t� � 0 and f0�t� � 0 for all t<0. Further, we assumed that

x0�0� � 0; x 00�0� � 0: �33�
The transform of the DtN operator, K�s� can be easily computed. Evaluating the integral indicated in
Eq. (32) for R�s� > 0 yields

K�s� � ko ÿ
XN
n�1

mn
o4

n

s2 � o2
n

: �34�

We use Eq. (34) to continue the de®nition of K�s� over the entire s-plane. We note by inspection that
K�s� has no singularities in the complex s plane except those at the points sn �2ion:

4.2.1. Bounds on K�s�
Here we ®nd it convenient to consider K�s� as a function of s 2. That is, we consider the function:

K2�s2� � K�s� � ko ÿ
XN
n�1

mn
o4

n

s2 � o2
n

�35�

We observe from Eq. (35) that K2�z� �z � s2� is a rational function of z with singularities only at the
points zn � ÿo2

n < 0; i.e. only on the negative real axis.
Further, we note that the analytic continuation of K2�z� into the whole of the z-plane is Herglotz

(Bender and Orszag, 1978; p. 358); i.e. I�K2�z�� < 0, I�z� < 0, I�K2�z�� > 0, I�z� > 0 and
I�K2�z�� � 0, I�z� � 0: To show this, we let z � x� iy (x and y are real), and obtain from Eq. (35)

K2�z� � ko ÿ
XN
n�1

mn
o4

n

�x� o2
n�2 � y2

��x� o2
n� ÿ iy�: �36�

The fact that K2�z� is Herglotz thus follows by inspection, noting that mn > 0 and on is real. Finally, we
note that K2�z�4ko as z 41 for any arg z. These properties together are su�cient to guarantee that
K2�z� is bounded by its PadeÂ approximants (Bender and Orszag, 1978, p. 406).

Following the notation of Bender and Orszag (1978), and N±M PadeÂ approximation shall be denoted
by PN

M�z�: That is

K2�z�1PN
M�z� �

XN
n�0

anz
n

XM
m�0

bmzm

: �37�
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Without loss of generality, b0 is chosen to be 1. Clearly, the fact that K2�z� is rational implies that the
PadeÂ sequence will converge to K2�z� for N and M su�ciently large. Smaller values of N and M,
however, provide upper and lower bounds on K2�z�:

PNÿ1
N �z�RPN

N�1�z�RK2�z�RPN�1
N�1�z�RPN

N�z� 8N, z > 0 �38�
Thus, each diagonal or nearly diagonal PadeÂ approximant provides a bound on K2�z�: the higher order
the approximant, the sharper the bound.

PadeÂ sequences can be developed from the Taylor expansion of K2�z� about any point. In particular,
the values of z = 0 or z=1 correspond to the physical limits of low and high frequency response,
respectively. Thus, if the low or high frequency limiting behavior of the system is known or can be
accurately estimated, then a PadeÂ approximation can be formed there. Such estimates can be used to
provide bounds on equipment models that will be presented later.

4.3. Low and high frequency approximate DtN maps

Eq. (24) represents the exact DtN map for the dynamical subsystem under consideration. In general, 2N
parameters are required to characterize the subsystem. When N is small, Eq. (24) can be conveniently used
directly. In practice, however, N can be arbitrarily large. In such situations, it is often bene®cial to consider
approximations to Eq. (24) in which the DtN map can be accurately represented by relatively few e�ective
parameters. In this section, we discuss two limiting cases in which this is possible. These are the special
cases when the excitation is either of very low frequency or very high frequency. These provide
approximations valid not only at small and large s 2, but by the results of Section 4.2, also bounds on the
behavior of K�s� along the entire real s-line. The bounds thus found can be used to ®nd bounds and
interrelations between the bulk or e�ective subsystem parameters, as we show below.

4.3.1. Low frequency limit
When the frequency of the excitation is much lower than the natural frequencies of the subsystem,

then the inertia of the subsystem is negligible to a ®rst approximation. To obtain an approximate DtN
map in this case, we rewrite Eq. (7) as

Kx�t� � ÿkkkx0�t� ÿMÈx: �39�
Solving Eq. (39) by iteration yields

x�t� � ÿKÿ1kkkx0�t� �Kÿ1MKÿ1kkk �x0�t� ÿKÿ1MKÿ1MKÿ1kkk
d4x0�t�

dt4
� � � � �40�

We now substitute Eq. (40) into Eq. (8) and simplify using Eq. (5) to obtain

f0�t� � mo �x0�t� �MT �x0�t� ÿ p �MKÿ1Mp
d4x0�t�

dt4
� � � � �41�

Here, we have used the relation MT � p �Mp, which represents the total mass in the subsystem. We
note that to leading order, the force is merely accelerating the subsystem as a rigid body.

Alternatively, we can derive a relation equivalent to Eq. (41) in the Laplace domain. Expanding Eq.
(31) in a Taylor series about s=0 yields

F0�s� �
�
s2mo � K�0� � sK 0�0� � 1

2
s2K 00�0� � 1

6
s3K 000�0� � 1

24
s4K �iv��0� � � � �

�
X0�s�: �42�
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The individual coe�cients in the series can be evaluated from Eqs. (34) and (27). Then Eq. (42)
simpli®es to:

F0�s� �
"
s2�mo �MT� ÿ s4

XN
n�1

mn

o2
n

� s6
XN
n�1

mn

o4
n

ÿ � � �
#
X0�s� �43�

Inverse transforming Eq. (43), and using Eq. (21) yields Eq. (41).
It is interesting to consider a PadeÂ approximation of K�s� obtained from this expansion. We can

construct the P 1
1 and P 1

2 PadeÂ approximants (about z=0) of K2�z� � K�s� by matching their asymptotic
expansions about z=0 to the coe�cients in Eq. (43). This yields

P1
2�s2�RK�s�RP1

1�s2� �44�

P1
2�s2� �

s2M2
T

MT � s2
XN
n�1
�mn=o2

n� � s4

24 XN
n�1
�mn=o2

n�
!2

ÿMT

XN
n�1
�mn=o4

n�
35=MT

�45�

P1
1�s2� �

s2M2
T

MT � s2
XN
n�1
�mn=o2

n�
: �46�

Eq. (44) provides not only approximations of K�s�, but also upper and lower bounds for all s 2> 0.
Eq. (44) can also be used to ®nd relations between the di�erent coe�cients that appear in those

equations. For example, evaluating Eq. (44) at s=1, and using Eqs. (28) and (55) yields:

O2
XN
n�1
�mn=o2

n�RMT: �47�

Further, recognizing that P1
1rP1

2 8s2 gives us: XN
n�1
�mn=o2

n�
!2

rMT

XN
n�1
�mn=o4

n�: �48�

These results shall be used later.

4.3.2. High frequency limit
Alternatively, the time scale of the excitation may be much higher than any of the natural frequencies

of the dynamical subsystem. In this case, the inertia term in Eq. (7) dominates. We rewrite Eq. (7),
therefore, as

MÈx�t� � ÿkkkx0�t� ÿKx �49�

MÈx�t�1ÿ kkkx0�t� �50�
Taking two time derivatives of Eq. (8) and simplifying using Eq. (50) yields
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�f0�t� � mox
�iv�
0 �t� � ko �x0�t� ÿ kkk �Mÿ1kkkx0�t�: �51�

Carrying the process still further yields:

f
�iv�
0 �t� � mox

�vi �
0 �t� � kox

�iv�
0 �t� ÿ kkk �Mÿ1kkk �x0�t� � kkk �Mÿ1KMÿ1kkkx0�t�: �52�

At very high frequencies, the last term in Eq. (51) can be neglected yielding

�f0�t� � mox
�iv�
0 �t� � ko �x0�t�: �53�

From Eq. (53), we see that in this regime the force is resisted primarily by the mass at the attachment
point and the elasticity in the equipment mount. Based on the interpretation of Eq. (53), we refer to the
quantity ko as the `high-frequency sti�ness'.

It is again interesting to consider the identical approximation in the Laplace domain. By doing so, we
shall obtain further bounds on K�s�: Taking the Laplace transform of Eq. (52) and noting Eq. (31)
yields

F0�s� � s2moX0�s� � K�s�X0�s� �54�

K�s�0ko ÿ kkk �Mÿ1kkksÿ2 � kkk �Mÿ1KMÿ1kkksÿ4 � o�sÿ6� s41 �55�

From the expansion (55), we can form the P 1
1 and P 0

1 PadeÂ approximants, this time about the point
s=1. Thus we obtain:

P0
1�s2�RK�s�RP1

1�s2� �56�

P0
1�s2� �

k2o
ko � kkk �Mÿ1kkksÿ2 �57�

P1
1�s2� �

kokkk �Mÿ1kkk� ��kkk �Mÿ1kkk�2 ÿ kokkk �Mÿ1KMÿ1kkk�sÿ2
kkk �Mÿ1kkk� kkk �Mÿ1KMÿ1kkksÿ2

�58�

Again, we have not only approximations of K�s�, but also bounds for all s 2r0. Eq. (56) implies that
Eq. (58) must be non-negative at s=0. This gives us:

�kkk �Mÿ1kkk�2rkokkk �Mÿ1KMÿ1kkk: �59�

Expanding Eq. (57) in the neighborhood of s=0, and using Eqs. (43) and (56) yields

k2os
2RMTkkk �Mÿ1kkks2: �60�

Eqs. (59) and (60) can be rewritten in terms of the modal masses and natural frequencies. To do so, we
use Eqs. (4), (21) and (22) to ®nd:

kkk �Mÿ1kkk �
XN
n�1

mno4
n �61�
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kkk �Mÿ1KMÿ1kkk �
XN
n�1

mno6
n: �62�

Combining Eqs. (59)±(62) (and using Eq. (28) as necessary) yields bounds on the modal sums:

MTO
4R

XN
n�1

mno4
n �63�

"XN
n�1

mno4
n

#2

rko
XN
n�1

mno6
n �64�

Eq. (64) shows that the behavior of the higher order moment �Smno6
n� is determined by the behavior of

lower order moments. Eq. (63) shall be used in a later section.

5. High modal density

In the last section, we simpli®ed the form of the exact DtN map, Eq. (24), by making assumptions
regarding the form of the excitation (i.e. high or low frequency). In this section, we instead make an
assumption regarding the complexity of the dynamical subsystem and thereby simplify the DtN map.

As noted earlier, the form of the DtN map in Eq. (24) is appropriate when the subsystem has few
modes. In that case, the subsystem can be reasonably categorized as simple. On the other hand, when
the subsystem has many modes in the frequency band of interest, i.e. is complicated, we seek an
alternate representation that is more e�ciently developed and evaluated.

Below, we change the sum in Eq. (24) to an integral over frequency. We then approximate the kernel
of the frequency integral and bound the resulting error. Making the error bound as small as possible
identi®es a sequence of parameters that govern the dynamics of the subsystem. Our analysis indicates
that these parameters are fundamental in describing the dynamics of the subsystem. The identi®cation of
these parameters is one of the main contributions contained in this paper.

5.1. Replacing sum by integral

When the modes of the subsystem are closely spaced in frequency, the sum over modes in Eq. (24)
can be accurately approximated by an integral. Such a substitution is the basis of the fuzzy structure
representations of Pierce et al. (1993). We shall also make use of the Pierce et al. (1993) notion of mass
as a function of natural frequency.

Unlike Pierce et al., we exactly replace the sum over modes with an integral over a frequency
parameter. To e�ect this replacement, we ®rst introduce the generalized function, m(o ), de®ned by

dm

do
�o� �

XN
n�1

mnd�oÿ on� �65�

m�0� � 0 �66�
Using Eq. (65) in the exact DtN map Eq. (24), allows us to rewrite that exact relation as

f0�t� � mo �x0�t� � kox0�t� ÿ
�t
ÿ1

�1
0

dm�o�
do

o3 sin�tÿ t�x0�t� do dt: �67�
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5.1.1. Properties of m(oo)
The function m(o ) inherits its properties from the modal masses in terms of which it is de®ned. Using

Eq. (65) in Eqs. (26) and (27) yields directly�1
0

dm

do
�o� do �MT �68�

�1
0

o2 dm

do
�o� do � ko: �69�

In addition, those inequalities derived in Section 4.3 have counterparts in terms of m(o ).

5.2. High modal density approximation

When the modes of the subsystem are closely spaced in frequency, the kernel in the integral operator
in Eq. (67) is rapidly varying. Under those conditions, the action of the operator can be simulated in
terms of another integral operator with a smooth kernel. With this motivation in mind, we therefore
consider splitting m(o ) into a `smooth' part and a rapidly varying part as follows:

m�o� � �m�o� �me

�
o
E

�
: �70�

Here, we have introduced the parameter E de®ned by

E � Do=O99 � 1: �71�
Do is taken to be a measure of the modal spacing, for example

Do � max n�on ÿ onÿ1�
or the average over all n of �on ÿ onÿ1�: Thus E is a non-dimensional measure of the modal spacing. O99 is
de®ned as the lowest frequency for which m(O99)e.99MT. An approximate DtN map (or fuzzy structure
approximation) is obtained by neglecting the me�o� term in Eq. (70) and replacing m(o ) by m-(o ) in Eq.
(67). The key to obtaining an accurate approximate DtN map lies in choosing m-(o ) appropriately.

We note that Eq. (70) leaves m-(o ) unspeci®ed in its relation to m(o ). Thus we are considering the
action of any continuous m-(o ) as an approximation for the action of m(o ). This notion is in contrast
to the presentation of Cherukuri and Barbone (1998), who require m-(o ) to be the limit of m(o ) as E4
0. Obviously, some choices of m-(o ) will lead to better approximations of the DtN map than others. In
order to yield an accurate DtN map, some properties of the exact m(o ) must be duplicated in m-(o ).
Precisely what aspects of m(o ) must be duplicated in m-(o ) in order to accurately represent the
dynamics of the subsystem is determined below, in an error analysis.

5.3. Error bounds

5.3.1. Error analysis
To obtain an approximate DtN map, we substitute Eq. (70) into Eq. (67) to write:

f0�t� � mo �x0�t� � kox0�t� ÿ
�t
0

�1
0

d �m

do
�o�o3 sin o�tÿ t� x0�t� do dt� error�t� �72�
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error�t� � ÿ
�t
0

�1
0

d

do

�
me

�
o
E

��
o3 sin o�tÿ t� x0�t� do dt: �73�

Here we have made the assumption that

x0�t� � 0 8t < 0 �74�
We shall now analyze the error in the force, error(t ). In what follows, we shall assume that all functions
are regular enough to carry out our calculations, and that all integrals and limits are de®ned. Integrating
Eq. (73) by parts three times with respect to t and using Eq. (74) yields:

error�t� � ÿ
�1
0

d

do

�
me

�
o
E

���
o2x0�t� ÿ x 000 �t� �

�t
0

cos o�tÿ t� x 0000 �t� dt
�

do: �75�

In terms of a new integration variable v=o/E, Eq. (75) can be rewritten as

error�t� �
�1
0

dme

dv
�v� dv x 000 �t� ÿ E2

�1
0

v2
dme

dv
�v� dv x0�t�

ÿ
�t
0

��1
0

dme

dv
�v� cos Ev�tÿ t� dv

�
x 0000 �t� dt: �76�

We now introduce the following integrals of me�o�:

m1�v� �
�v
0

me�v 0 � dv 0 �77�

mn�v� �
�v
0

mnÿ1�v 0 � dv 0 �78�

Integration by parts with respect to v allows us to write:�1
0

dme

dv
�v� cos Evt dv � me�v� cos Evt jv�1 �Etm1�v� sin Evt jv�1 �

� � � � �ÿ1�nE2nt2nm2n�v� cos Evt jv�1 ��ÿ1�nE2n�1t2n�1
�1
0

m2n�1�v� sin Evt dv �79�

Here we have integrated by parts an odd number of times. One can, of course, integrate by parts an
even number of times to obtain a similar result. The expansion indicated in Eq. (79) can be continued
inde®nitely, provided that the integrals at each stage converge. This convergence can be guaranteed for
any m(o ) by an appropriate choice of m-(o ). In order for the limits (at v=1) indicated in Eq. (79) to
exist, we require:

lim
v41me�v� � 0 �80�

lim
v41mj�v� � 0 j � 1, . . . , 2n �81�

Substituting Eqs. (79)±(81) (with nr2) into Eq. (76) now allows us to write error(t ) as
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error�t� � �ÿ1�n�1E2n�1
�t
0

�1
0

m2n�1�v� sin Ev�tÿ t� dv�tÿ t�2n�1x 0000 �t� dt: �82�

5.3.2. Error bound

We now seek to bound error(t ). To that end, we note

error�t�R
������ÿ1�n�1E2n�1

�t
0

�1
0

m2n�1�v� sin Ev�tÿ t� dv�tÿ t�2n�1x 0000 �t� dt

�����
RE2n�1t2n�1

�����
�1
0

m2n�1�v�
�t
0

sin Ev�tÿ t�x 0000 �t� dt dv

�����
RE2n�2t2n�1

�����
�1
0

vm2n�1�v�
�t
0

cos Ev�tÿ t�x 000 �t� dt dv

�����
RE2n�2t2n�1

�1
0

j vm2n�1�v� j
�t
0

j cos Ev�tÿ t�x 000 �t� j dt dv

RE2n�2t2n�1
�1
0

j vm2n�1�v� j dv

�t
0

j x 000 �t� j dt

RE2n�2t2n�1
�1
0

j vm2n�1�v� j dv

�t
0

dt j x 000 �max � j� E2n�2�t�2n�2C2n�1 j x 000 �max � j

�83�

Here, we have introduced the constant C2n�1 which is de®ned as

C2n�1 �
�1
0

j vm2n�1�v� j dv: �84�

We note that for any m(o ), m-(o ) can always be chosen in such a way that C2n�1 exists. Further, the
error grows with time as t2n�2: Thus, no matter how small E may be, the error becomes signi®cant at a
time t � O�Eÿ1�: We note, however, that up to this point in the derivation we have neglected all forms of
dissipation. If the subsystem under consideration has a small amount of dissipation (as shown by
Cherukuri and Barbone, 1998) then the error will remain bounded for all time. In essence, this requires
that all transient motion of x0�t� has stopped before the error has had a chance to accumulate.

5.3.2.1. The source of the error. The accumulation of error in this approximation is due to approxi-
mations of the phase of the individual modes. Replacing the exact DtN map, Eq. (24), by the approxi-
mation (72) can be thought of as replacing the individual term in Eq. (24) by the following integral:

mno3
n sin on�tÿ t�1 1

onE

�on�1�E�=2

on�1ÿE�=2
�m�o�o3 sin o�tÿ t� do �85�

This approximation is valid only as long as the sine terms in the integral remain in phase with each
other. To show this, we approximate the integral on the right of Eq. (85) in the following manner:

1

onE

�on�1�E�=2

on�1ÿE�=2
�m�o�o3 sin o�tÿ t� do1 �m�on�o3

n

1

onE

�on�1�E�=2

on�1ÿE�=2
sin o�tÿ t� do �86�
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1ÿ �m�on�on3
n

onE�tÿ t� cos o�tÿ t� jon�1�E�=2
on�1ÿE�=2 �87�

1 �m�on�o3
n

onE�tÿ t�2 sin on�tÿ t� sin�onE�tÿ t�=2� �88�

1
�m�on�o3

n

onE�tÿ t� �onE�tÿ t�=2ÿ o3
nE

3�tÿ t�3=12�2 sin on�tÿ t� �89�

1 �m�on�o3
n sin on�tÿ t��1ÿ o2

nE
2�tÿ t�2=6� �90�

Therefore, we see that the error is due to accumulation of frequency approximations in the substitution
of the sum for the integral. Thus, there is no need to appeal to any argument based on limiting dissipa-
tion (Weaver, 1997).

5.4. E�ective dynamical parameters

Eqs. (80) and (81) state the conditions under which the error in the DtN map is bounded (see Eq.
(83)). Through Eq. (70) these conditions specify certain restrictions on m-(o ) in its relation to m(o ). In
satisfying these conditions, we shall identify several e�ective dynamical parameters which characterize a
given dynamical subsystem.

To do so, we ®rst consider the nth moment of the mass-frequency distribution dme=dv �v�

In �
�1
0

vn
dme

dv
�v� dv: �91�

We now integrate Eq. (91) by parts to obtain

In �
Xn
j�0
�ÿ1� jvnÿjmj�v�: �92�

Thus we conclude that conditions (80) and (81) are equivalent to�1
0

v j dme

dv
�v� dv � 0, j � 0, . . . , 2n: �93�

From the de®nition of me�o=E� in Eq. (70), we obtain�1
0

v j dme

dv
�v� dv � 0,

�1
0

o j

�
dm

do
�o� ÿ d �m

do
�o�

�
do � 0: �94�

Using the de®nition of m(o ), Eq. (65), in Eq. (94) yields�1
0

o j d �m

do
�o� do �

XN
n�1

o j
n mn: �95�

Eq. (95) shows that in order to accurately represent a dynamical subsystem in a simulation, one must

P.E. Barbone et al. / International Journal of Solids and Structures 37 (2000) 2825±2857 2839



choose the moments of m-(o ) to agree with those of the subsystem itself. These parameters, the
frequency moments of the modal masses, are in this way fundamental in describing a system's
dynamical response. We call them the `e�ective dynamical parameters'.

5.4.1. Physical interpretation of e�ective parameters
For this section, and through the rest of this paper, we shall consider the special case of n=1 (cf Eq.

(81)). That is, we shall require that�1
0

d �m

do
�o� do �

XN
n�1

mn �MT �96�

�1
0

o
d �m

do
�o� do �

XN
n�1

onmn � Zo �97�

�1
0

o2 d �m

do
�o� do �

XN
n�1

o2
nmn � ko: �98�

Here we have used the results of Eqs. (25) and (27). We recall that MT is the total mass of the
subsystem, while ko is the `high frequency sti�ness'. In Eq. (97) we have introduced the quantity Zo,
which we shall call the `e�ective dissipation' of the subsystem.

Eq. (83) with n = 1 shows that if one chooses m-(o ) to correctly represent the total mass MT, high
frequency sti�ness ko, and the e�ective dissipation Zo of a subsystem, then the error incurred in a
dynamical simulation will be bounded by

error�t�R�Et�4C5 j x 000 �max � j : �99�
From Eqs. (96)±(98) we can see that with each dynamical subsystem, we can associate a total mass and
two frequencies. In what follows, we shall ®nd it convenient to represent a subsystem in terms of its
`frequency' parameter O, (cf Eq. (28)) and `damping' parameter a0, which is de®ned by

a0 � Zo=MTO: �100�
In Appendix A, we show that a0 R 1 for all discrete dynamical systems.

6. Modeling dynamical subsystems: canonical representations

6.1. Canonical representations

In the last section, we determined those parameters of a dynamical subsystem that are important to
describe the dynamics of that subsystem. That is, we determined which features of m(o ) must be
duplicated in m-(o ) in order to accurately reproduce the force at the attachment point. Beyond the
speci®cation of the e�ective parameters just described, however, m-(o ) remains unspeci®ed up to now.

In this section, we consider several canonical representations of dynamical subsystems that are based
on di�erent modeling perspectives. By `representation', we mean a function m-(o ) which is used in the
approximate DtN map, Eq. (72). In the rest of this section we consider di�erent choices for m-(o ) which
have prescribed values of MT, Zo, and ko: Each choice di�ers in its functional dependence on o, but
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nevertheless satis®es conditions (96)±(98). Therefore, each choice will yield accurate results in a
dynamical simulation as speci®ed in Eq. (99). Thus the speci®c choice of m-(o ) as described here is more
a matter of taste or ease of application than of accuracy.

The three canonical functions we shall describe are derived from di�erent perspectives. In the ®rst, we
shall derive an optimal representation based on information theory. The calculation presented below is
motivated by and is similar in both spirit and detail to that presented by Pierce (1995b). We include it
as one perspective to obtain a canonical m-(o ). In the second approach, we consider the form of m-(o )
to be a self-similar function of frequency. This leads to a non-linear functional equation which we solve
for the function m-(o ). The third approach, the rational function representation, is motivated by the
resulting simplicity of the approximate DtN map. It leads to a very satisfying physical analogy, which is
presented in Section 6.4.3.

In what follows, we shall ®nd it convenient to work in terms of a non-dimensional mass distribution
function. Thus we introduce the non-dimensional frequency v and non-dimensional mass distribution
m(v ) as follows:

v � o=O �101�

m�v� � O
MT

d �m

do
�o�: �102�

In terms of Eqs. (101) and (102), the three conditions (96)±(98) take the form:�1
0

m�v� dv � 1 �103�

�1
0

vm�v� dv � a0 �104�

�1
0

v2m�v� dv � 1: �105�

6.2. Maximum entropy formulation

6.2.1. Derivation of mm(v )
Because of the normalization property (103) of m(v ), we may think of this function in the abstract

sense as a probability distribution. Following up on this line of thinking, we may also consider the
conditions (104) and (105) as constraints on m(v ). Thus we seek to ®nd a m(v ) that maximizes the
`entropy' or `uncertainty' subject to the constraints that Eqs. (104) and (105) are satis®ed. The
uncertainty or entropy function for m(v ) can be written as (Pierce, 1995b):

H�m� � ÿ
�1
0

m�v� log�m�v�� dv: �106�

We wish to ®nd m(v ) such that H is stationary subject to the conditions (103)±(105). Therefore, we
introduce the functional P[m ] de®ned by
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P�m� � H�m� ÿ l0

��1
0

m dvÿ 1

�
ÿ l1

��1
0

v
d �m

do
�o� dvÿ a0

�
ÿ l2

��1
0

v2
d �m

do
�o� dvÿ 1

�
: �107�

Here, l0±l2 are Lagrange multipliers enforcing the constraints.
Making P stationary with respect to m, l0, l1, and l2 leads to Eqs. (103)±(105) and:�1

0

dm� log mÿ 1� l0 � l1v� l2v2� dv � 0 �108�

Eq. (108) leads directly to the result

m�v� � exp�1ÿ l0 ÿ l1vÿ l2v2�: �109�

6.2.2. Evaluating the coe�cients, ll0, ll1, ll2
Substituting Eq. (109) into Eqs. (103)±(105) and rearranging yields the following equations for l0, l1

and l2:

1 � A el
2
1=4l2

1

2

������
p
l2

r
erfc

�
l1

2
�����
l2
p

�
�110�

a0 � Aÿ l1
2
�����
l2
p �111�

1 �
������
1

l2

r "
1

2
� l21

4l2
ÿ Al1

2l2

#
�112�

A � e1ÿl0 �113�
Given a0, Eqs. (110)±(112) are to be solved for l0±l2. These values are then to be substituted into Eq.
(109) to obtain m(v ). In order to solve Eqs. (110)±(112), we combine them to write a single equation for
the variable c � l1=2

�����
l2
p

:

�a0 � c� ���
p
p

exp�c2� erfc�c� � 1: �114�
Once c is determined from Eq. (114), A=

�����
l2
p

can be found from Eq. (111). Finally, l2 is obtained from
Eq. (112). We note that it is easy to verify that for any values of 0< a0 R 1, Eq. (114) has a solution.

6.2.3. Implementation of maximum entropy representation
In order to get the DtN map associated with the Maximum Entropy Representation of dm-/do(o ), we

substitute Eq. (109) (in dimensional form) into Eq. (72) to write

f0�t� � kox0�t� ÿ
�t
0

kkk�tÿ t�x0�t� dt, �115�

kkk�t� �MTA

�1
0

o3 exp�ÿl1o=Oÿ l2o2=O2� sin o�t� do: �116�
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We note that l1 may be positive or negative, but l2 is strictly positive. We now evaluate the integral in
Eq. (116) by writing sin(ot ) as I{eiot} and integrating three times by parts to obtain

kkk�t� � ÿO
4l1
4l32

Ot� O4

8l2

������
p
l2

r
e�l

2
1ÿO2t2�=4l2 �I

�
�iOtÿ l1�

�
3� 1

2l2
�iOtÿ l1�2

�
�

erfc��iOtÿ l1�=2
�����
l2

p
�� eÿ2il2Ot

� �117�

The error function is de®ned by erfc�z� � �2= ���
p
p ��1z eÿt

2

dt (Abramowitz and Stegun, 1972).
In the form of Eq. (117), kkk�t� is di�cult to use since the error function must be evaluated for complex

argument. Of course, given the values of l1 and l2, this calculation could be done as a preprocess and
the result tabulated. For more complicated functions of kkk�t�, this would be recommended. For the
special case of l1=0, the error function drops out of the formulation.

6.3. Self-similar formulation

Here we formulate and solve the problem of determining the `limiting' m- '(o ) in a complicated
subsystem. The subsystem is imagined to be made up of a collection of smaller `minor' subsystems, each
of which, in turn, is made up of a collection of still smaller minor subsystems, and so on. As the
subsystems become more and more complicated, we hope to ®nd a limiting form of the dm/do(o )
function.

To each minor subsystem, we shall prescribe three parameters: Mj, Zj, and kj: Further, we de®ne a
`frequency' and `damping factor' for each minor subsystem de®ned as Oj �

������������
kj=Mj

p
, and a0j � Zj=MjOj,

respectively. In the Laplace domain, the DtN map for each subsystem can be written as:

Fj�s� �MjO
2
j K�s=Oj, a0j �X�s�: �118�

If the minor subsystems are su�ciently complicated that their representation has reached its limiting
form, then the function K will be the same function for all the subsystems comprising the whole. This is
the essential assumption on which the following is based.

We now consider a subsystem comprised of many smaller subsystems as depicted in Fig. 1. The sum
of the forces in springs j must balance the force f0, thus

f0 �
X
j�1

fj: �119�

Also, the displacements of each of the subsystems are identical

x0 � xj j � 1, 2, . . . �120�
Combining Eqs. (118)±(120) allows us to write

M0O
2
0K�s=O0, a0�X0�s� �

X
j�1

MjO
2
j K�s=Oj, a0�X0�s� �121�

We require Eq. (121) to hold for arbitrary X0�s�, which we can therefore cancel from both sides.
We now pass to the limit in which the number of subsystems becomes in®nite. For convenience, we

non-dimensionalize all frequencies with respect to O0, and all masses with respect to M0. Therefore we
make the following replacements in Eq. (121):
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s � s=O0 �122�

Oj � ojO0 �123�

Mj �M0
d �m

do
�o�

����
o�oj

do �124�

X
j�1
�
�1
0

�125�

Thus we obtain an integral equation for dm-/do(o ):

K�s, a0� �
�1
0

d �m

do
�o�K�s=o, a0� do �126�

In order to close Eq. (126), we must specify the relation between K(s ) and dm-/do(o ). If we assume that
the relation between K(s ) and dm-/do(o ) is the same here as it is in the case of simple oscillators, then
such a closure relation can be obtained from Eqs. (35) and (65). This yields, (for dm-/do(o ) analytic in
the upper half o-plane)

K�s� � ÿ p
2
s3

d �m

do
�o�

����
o�is

: �127�

We combine Eqs. (126) and (127) to ®nd the following homogeneous nonlinear integral equation for
dm-/do(o ):

d �m

do
�is� �

�1
0

d �m

do
�o�d �m

do

�
is
o

�
do
o
: �128�

To solve Eq. (128), we replace z= log(is ), v= logo and m(z )=dm-/do(ez) to write:

m�z� �
�1
ÿ1

m�v�m�vÿ z� dv: �129�

Eq. (129) may be solved by Fourier transform. We denote by �m the transform of m. Taking the
transform of Eq. (129) leads to

�m � �m2 �130�

�m � 1 �131�
Thus, we conclude that

d �m

do
�o� � d�oÿ o0�: �132�

Eq. (132) describes the mass-frequency distribution of a single oscillator with arbitrary natural frequency
o0. The implication of Eq. (132) is that only identical oscillators can be connected together (in the
manner that we have assumed) such that the behavior of whole is the same as the behavior of the
individual parts.
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Clearly the mass-frequency distribution in Eq. (132) is not representative of whole classes of
complicated subsystems. While this result is not of practical interest, it is of interest to see where the
assumption of self-similarity has led. We note, however, that self-similarity was not the only assumption
made in this section, and that perhaps the concept of self-similarity might still lead to valuable
subsystem models.

6.4. Rational function approximation

Here we consider representing m(v ) by a rational function of v. This representation has considerable
bene®ts in terms of both ease of application and in terms of physical interpretation.

To obtain a rational function representation of m(v ), we must ®rst choose a desirable form. We shall
choose m(v ) to be an even function of v. In order that the integral in Eq. (105) be well de®ned, we
require that m(v ) be o�vÿ3� v41. These requirements lead us to choose the following form for m(v ):

m�v� � c

�v4 ÿ 2�a2 ÿ b2�v2 � �a2 � b2�2� : �133�

We note that more elaborate choices of m(v ) can lead to higher order models with (presumably) greater
accuracy than that chosen here, however, Eq. (133) shall su�ce to satisfy our three conditions (103)±
(105).

6.4.1. Evaluating the coe�cients a, b and c
The three coe�cients in Eq. (133) are to be determined by requiring Eq. (133) to satisfy Eqs. (103)±

(105). This leads to the equations (Mathematica was used here)

1 � pc
4b�a2 � b2� �134�

a0 � c

4ab
�pÿ 2y� �135�

1 � pc
4b
: �136�

In Eq. (135), y is de®ned so that tan y � b=a: Solving Eqs. (134) and (136) in terms of y yields

a � cos y �137�

b � sin y �138�

c � 4=p sin y �139�
The value of y is determined from Eq. (135) which simpli®es using Eqs. (137)±(139) to

pÿ 2y
p cos y

� a0: �140�

Thus, given a0 for a particular subsystem, we determine y by solving Eq. (140). Then we obtain a, b and
c from Eqs. (137)±(139). We note that Eq. (140) has real solutions for y only for a0 > 2/p. Smaller
values of a0 can be obtained by allowing y=p/2+ig, as we shall discuss later.
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6.4.2. Implementation of rational function approximation
The rational function approximation can be implemented in either convolution form, or in a form

local in time. To obtain the convolution form, we merely substitute m(v ) into Eq. (24). Since the kernel
is a rational function of v, however, the resulting DtN map can be written alternatively in a form that is
local in time.

To show this, we consider the non-dimensional DtN map in the Laplace domain. Therefore we
introduce K

-
(s ) which is the non-dimensional Laplace transform of the approximate DtN map resulting

from m-(o ) (cf Eqs. (31), (32) and (67)).

�K�s� � 1ÿ
�1
0

�1
0

v3m�v� sin�vt� dv eÿst dt � 1ÿ
�1
0

m�v� v4

s2 � v2
dv �141�

Here, K
-
is non-dimensionalized with respect to ko, and s is non-dimensionalized with respect to O.

Thus with the de®nition (141), Eq. (31) becomes:

F0�s� � s2moX0�s� � ko �K�s=O�X0�s�: �142�

When m(v ) is a rational even function, as here, the integral (141) is easily evaluated by residues. The
result is a rational function of s of the form (Mathematica used here):

�K�s� � 1ÿN�s�=D�s� �143�

N�s� � �1� 2bs� �144�

D�s� � �s2 � 2bs� 1�: �145�

We now substitute Eq. (143) into Eq. (142), multiply both sides by D(s ), and inverse Laplace transform
to obtain:

Df0�t� � mo
d2

dt2
Dx0�t� � ko

d2

dt2
x0�t�: �146�

The operator D is given by:

D � d2

dt2
� 2bO

d

dt
� O2: �147�

The form of the DtN map, Eq. (146), is much more convenient in implementation than the convolution
form. For one, it does not require the full displacement history at the attachment point. Further, the
evaluation of the force f0�t� at each time step is relatively e�cient compared to a long time convolution.
We shall show below an equivalent formulation which is not only local in time, but has an appealing
physical analogy.

Before closing this section, we note that the form (146) with the coe�cients as given is subject to the
restriction of homogeneous initial conditions on f �t� and x0�t�:

f0�0� � 0 _f0�0� � 0

x0�0� � 0 �148�
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6.4.3. A physical analogy
In this section, we describe a simple model which corresponds to the local (in time) DtN map, Eq.

(146). To start with, we rewrite Eq. (146) as

f0�t� � mo
d2

dt2
x0�t� � f2�t�, �149�

Df2�t� � ko
d2

dt2
x0�t�: �150�

We now introduce a `dummy' displacement-type variable, y�t�, de®ned by

f2�t� �MT �y�t�; y�0� � _y�0� � 0: �151�
Substituting Eq. (151) into Eq. (150) and integrating twice with zero initial conditions yields:

MT �y�t� � 2bMTO _y�t� � koy�t� � kox�t�: �152�
Eq. (152) is the equation of motion for a spring-dashpot-mass system in series. The parameters MT and
ko are the mass and spring constants of mass-spring system, respectively. The coe�cient b de®ned in Eq.
(138) has the physical interpretation of the fraction of critical damping. This implies that the dashpot
constant C in the analogy is given by

C �MTO=2b � ko=2bO �153�
We emphasize that the physical analogy is exactly equivalent to the local DtN map resulting from the
rational function representation of m-(o ).

In terms of the `dummy' displacement variable y�t�, the local DtN map, Eqs. (149) and (150) can
now be rewritten as:

f0�t� � mo
d2

dt2
x0�t� �MT �y�t�, �154�

kox�t� �MT �y�t� � 2bMTO _y�t� � koy�t�: �155�
Eqs. (154) and (155) are in the most convenient form for practical implementation.

6.4.4. Relation between critical damping parameter and e�ective dissipation parameter
It is interesting to examine the relation between the critical damping parameter b from the physical

analogy and the e�ective dissipation parameter a0 that results from the high modal density
approximation. These two can be related through Eqs. (138) and (140).

Underdamped case: Provided b R 1, a0 and b are related by:

a0 � pÿ 2 sin ÿ1b

p
�������������
1ÿ b2
p : �156�

Overdamped case: When br1, Eq. (156) is still valid, but can be rewritten in a much more convenient
form. We shall use the identity
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sin ÿ1x � p=2� i cosh ÿ1x: �157�

Thus, Eq. (156) simpli®es to

a0 � 2 cosh ÿ1b

p
�������������
b2 ÿ 1
p : �158�

The two relations (156) and (158) are summarized in the plot in Fig. 2.

6.4.5. Estimated bounds on critical damping parameter
In Section 4.2 we showed that K�s� is bounded by its PadeÂ approximants. We have no such bounds

on K
-
(s ), however. It is interesting, nevertheless, to assume that those bounds derived in Section 4.2 hold

for K
-
(s ), and thus derive estimated bounds for the critical damping factor, b. Therefore, based on Eq.

(38) we shall assume:

P0
1�s2�Rko �K�s=O�RP1

1�s2�: �159�
We use the high frequency derivation of P 0

1 given by Eq. (57) and the low frequency expression for P 1
1

given by Eq. (46) in Eq. (159) to write

k2o

ko � sÿ2
XN
n�1

mno4
n

Rko �K�s=O�R s2M2
T

MT � s2
XN
n�1
�mn=o2

n�
: �160�

We gain some con®dence in our assumption of Eq. (159) by the fact that Eq. (160) is satis®ed in both
the s=0 and s=1 limits.

To obtain bounds on b, we substitute Eqs. (143)±(145) into Eq. (160) and evaluate the result at s=O
to obtain:

k2o

ko � Oÿ2
XN
n�1

mno4
n

R ko
2� 2b

R M2
TO

2

MT � O2
XN
n�1
�mn=o2

n�
: �161�

Simplifying leads to

XN
n�1
�mn=o2

n�

MT=O
2
ÿ 1R2bR

XN
n�1

mno4
n

MTO
4
ÿ 1: �162�

The inequality (47), however, shows the left hand side of Eq. (162) to be non-positive. The inequality in
Eq. (63), on the other hand, shows the right hand side of Eq. (162) to be always non-negative. Thus we
obtain the estimated bound on the critical damping coe�cient, b:

0R2bR

XN
n�1

mno4
n

MTO
4
ÿ 1: �163�
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7. Examples

In the examples that follow, we shall remove a large portion of the computational problem and
replace it with a DtN boundary condition as we have described earlier. The DtN map shall be
computed with a high-modal density approximation. The results of using the DtN map shall be
compared to results obtained by simulating the full dynamical system.

7.1. Large oscillator connected to complicated substructure

The ®rst system that we shall consider is that studied by Weaver (1996, 1997). It consists of a `large'
mass-spring oscillator which is attached to a complicated substructure, as shown in Fig. 3. The
equations of motion for the system are

M �x0�t� � Kx 0�t� �
XN
n�1

kn�xn�t� ÿ x0� �164�

mn �xn�t� � knxn�t� � knx0�t� �165�

Fig. 2. Relation between critical damping factor, b, and `e�ective' damping constant, a0. The relation is described quantitatively in

Eqs. (156) and (158).
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ko �
XN
n�1

kn: �166�

7.1.1. Exact DtN map formulation
In order to apply the DtN map concept, we rewrite Eqs. (164)±(166) as follows:

M �x0�t� � Kx 0�t� � ÿf0�t� �167�

f0�t� �
XN
n�1

kn�xn�t� ÿ x0� �168�

To make the connection to our original formulation, we note that Eq. (165) is identical to Eq. (7), Eq.
(166) is a special case of Eq. (5), and Eq. (168) is a special case of Eq. (8).

In this example, mo � 0, o2
n � kn=mn, MT � Snmn, O2 � ko=MT: Thus, Eq. (24) gives us the force

as:

f0�t� � kox0�t� ÿ
�t
ÿ1

XN
n�1

mno3
n sin on�tÿ t�x0�t� dt: �169�

Therefore, in order to determine the dynamic response of the mass, we must solve Eq. (167) with Eq.
(169), subject to initial conditions

x0�0� � A; _x0�0� � B: �170�

7.1.2. Approximate DtN map formulation
Alternatively, we can use the approximate DtN map, Eqs. (154) and (155). For this example, Eqs.

(154) and (155) simplify to

f0�t� � kox0�t� ÿ 2bMTO _y�t� ÿ koy�t�, �171�

kox0�t� �MT �y�t� � 2bMTO _y�t� � koy�t�: �172�

Fig. 3. A large mass-spring oscillator connected to a complicated substructure. The substructure is represented by the collection of

small oscillators.
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Combining Eq. (171) with Eq. (167) yields

M �x0�t� � �K� ko�x0�t� � 2bMTO _y�t� � koy�t�: �173�
Therefore, in order to determine the approximate dynamic response of the mass, we must solve Eq.
(173) with Eq. (172), subject to initial conditions (170) and

y�0� � 0; _y�0� � 0: �174�
The di�erential Eqs. (173) with (172) exactly represent the system depicted in Fig. 4.

To evaluate the constant b, we must ®rst evaluate Zo which is given by Eq. (96) as

Zo �
XN
n�1

onmn: �175�

Then, a0 � Zo=MTO (by Eq. (100)) and b can be evaluated by solving either Eq. (156) or Eq. (158), as
appropriate.

7.1.3. Example results
Here we compare the results for a subsystem of N= 1000 masses attached to a single large mass. We

compare the results of the approximate DtN map, Eq. (173) with Eq. (172), to the results obtained by
directly simulating the full system of Eqs. (164)±(166).

The large mass is M = 2, while its spring has spring constant K = 2. The values of on were chosen
randomly between 0 and Omax=10. The values of mn were chosen according to a selected distribution,
as

mn � p�o�Omax =N: �176�
In all the examples, p(o ) is chosen to be p�o� �MT exp �ÿlo�=l, with l=2.0. For the dynamical
simulations, the initial conditions are given by Eqs. (170) and (174), with A=0 and B=1.

We consider two di�erent subsystems with very di�erent masses. In one case, the subsystem has mass
MT10:25, while in the other case MT110: The two results are shown in Figs. 5 and 6, respectively. We
note that remarkably di�erent physical behavior results in the two cases. In each case, however, we see
that the approximate solution, obtained from integrating just two second order equations, closely
approximates the reference solution for times below about 50 units. Above those times, the
approximation breaks down as predicted by the error analysis in Section 5.3.1.

Fig. 4. The asymptotically equivalent system. The response of the master structure in this system is approximately the same as that

depicted in Fig. 3. The substructure has been replaced by a spring-dashpot-mass structure.
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7.2. Elastic rod connected to complicated substructure

We now consider the interaction between two elastic structures: a homogeneous elastic rod connected
to a `complicated', randomly inhomogeneous elastic rod; see Fig. 7. We shall represent the
inhomogeneous rod using a high-modal density DtN map as we did in the last example. Indeed, to
model the inhomogeneous rod, we follow steps similar to those outlined above.

In Fig. 8, we plot the displacement pro®les on the homogeneous portion of the rod at even time
intervals. We plot the displacement predicted by the approximate DtN map and compare that to the
displacement predicted in the reference structure. The input is a Gaussian shaped pulse which
propagates to the right. The right traveling wave is represented at 25 time-unit intervals by the large
peaks centered at x = 10, 35, 60 and 85. (The wave speed in the homogeneous rod is unity.) The right
traveling pulse is re¯ected at the right end of the homogeneous rod. The re¯ected left traveling pulse is
of lower amplitude.

We see that the approximate and reference solutions agree exactly up to the re¯ection from the
complicated substructure. The subsequent re¯ected pulses agree closely in shape and amplitude. The
main di�erence between them is represented in the slow decay of the tail in the approximate solution.
The elapsed time shown in the ®gures is not su�cient to show the pulse re¯ected from the far end of the
complicated rod. The approximate solution does not predict this pulse, though it is present in the
reference solution, of course.

Fig. 5. Example 1a: `large' mass-spring oscillator interacting with light but complicated substructure.
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8. Conclusions

We have proposed the use of a time-domain DtN map to represent complicated subsystems in
dynamical simulations. We derived an exact DtN map for a general linear-elastic system which is
attached to the outside world at one point. We studied the properties of this map and found many
interesting results including interrelations between bulk dynamical coe�cients, and bounds on the

Fig. 6. Example 1b: `large' mass-spring oscillator interacting with heavier complicated substructure.

Fig. 7. A homogeneous elastic rod connected to an inhomogeneous elastic rod. The homogeneous rod is the main structure of

interest. The e�ect of the `complicated' inhomogeneous rod on the dynamics of the other shall be represented by an approximate

DtN map.
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symbol of the map in the Laplace domain. We also studied the high modal density or in®nitely
complicated limit, and derived the `e�ective dynamical parameters' governing the dynamics of a
subsystem. These were used to construct various subsystem representations which are accurate in the
high modal density limit. The most intriguing of these is the rational function representation. From this
representation we were lead to conclude that a su�ciently complicated subsystem is asymptotically
equivalent (as E4 0) to a simple single spring-dashpot-mass system, (for t � o�Eÿ1�:� Several examples of
our high modal density approximation were studied. The agreement between model and reference
solutions was initially very good, but gradually deteriorated in agreement with the predictions of Section
5.3.1.

The results presented here show that a su�ciently complicated subsystem can be accurately
represented by a subsystem of much smaller dimensionality. The model system is dissipative, even
though the original system is not. The dissipation models vibratory energy being transferred from the
master structure to the slave subsystem (Pierce et al., 1993; Strasberg and Feit, 1996). This analogy
provides an interesting dynamical interpretation of the origin of damping in physical systems.

Though our analysis is presented in the context of structural dynamics, it generally applies to any
large system of oscillators. We emphasize, however, that the high modal density approximation
presented here is valid only for simulation time=o(Eÿ1). Cherukuri and Barbone (1998) show that small
dissipation of O(E ) in the subsystem is su�cient to keep the high modal density approximation valid for
all time. Essentially, the dissipation kills the response before the error has time to build up. Developing

Fig. 8. Example 2: re¯ection from elastic bar with random mass density.

P.E. Barbone et al. / International Journal of Solids and Structures 37 (2000) 2825±28572854



an approximation which is valid for all time in the absence of dissipation is more di�cult, and is an
area of active work.
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Appendix A. Proof that aa0 R 1 for all subsystems

In this Appendix, we prove that a0 R 1 for all subsystems. The proof proceeds by induction. We ®rst
show that for a system with a single mode, a0=1. The we show if a0 R 1 for a system with N modes of
vibration, then a0 R 1 with the addition of another mode of vibration.

We recall the de®nition a0 given in Eq. (100)

a0 � Zo=MTO > 0: �A1�
Here, O2 � ko=MT, and MT, Zo, ko are the `e�ective dynamical parameters' de®ned in Eqs. (96)±(98).

Here we consider the values of MT, Zo, ko as functions of N. To that end, we de®ne:

MN �
XN
n�1

mn �A2�

ZN �
XN
n�1

mnon �A3�

kN �
XN
n�1

mno2
n �A4�

O2
N � kN=MN �A5�

aN � ZN=MNON �A6�
To begin, we let N=1 in Eqs. (A2)±(A6) to ®nd

a1 � 1: �A7�
From Eqs. (A2)±(A4), we now note

MN�1 �MN �mN�1 �A8�

ZN�1 � ZN �mN�1oN�1 �A9�
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kN�1 � kN �mN�1o2
N�1: �A10�

Thus we can write the following equation for a 2
N + 1:

a2N�1 �
Z2N�1

MN�1kN�1
�A11�

�
a2N � 2aN

mN�1
MN

oN�1
ON
� m2

N�1
M2

N

o2
N�1
O2

N�
1� mN�1

MN

� 
1� mN�1

MN

o2
N�1
O2

N

! : �A12�

For convenience, we are motivated to introduce the following variables:

m � mN�1=MN v � oN�1=ON: �A13�
We note that these de®nitions hold in this appendix only, and are not to be confused with the
de®nitions of m and v given in the main text of the paper.

In terms of m and v, Eq. (A12) can be rewritten as

a2N�1 �
a2N � 2aNmv� m2v2

�1� m��1� mv2� : �A14�

From Eq. (A14), we conclude:

a2N�1 > 1 , a2N � 2aNmv� m2v2 > �1� m��1� mv2�: �A15�

Simplifying the right hand side of Eq. (A15) yields:

a2N�1 > 1 , a2N � 2mvaN ÿ �1� m�1� v2�� > 0: �A16�

We shall now show that a2N � 2mvaN ÿ �1� m�1� v2�� > 0 is not satis®ed for any 0< aN R 1.
We let a� be the positive root of

a�2 � 2mva� ÿ �1� m�1� v2�� � 0: �A17�
It is easy to show that the second root of Eq. (A17) is negative. a� is given by:

a� �
�������������������������������������������
�1� mv�2 � m�1ÿ v�2

q
ÿ mvr

�������������������
�1� mv�2

q
ÿ mv � 1: �A18�

Finally, we note that aN=0 leads to the right hand side of Eq. (A16) being false.
We conclude that

a2N�1 > 1, aN > a�r1: �A19�

Thus, aN + 1 > 1 if, and only if, aN > 1. Since a1=1, a2 and all subsequent a 0ns will be equal to or less
than unity.

It is worth noting before we close this section that the equality in Eq. (A18) is achieved only for
v=1.
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